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Abstract

The internal wave modal equations are solved with the consideration of background currents. Analytical and numerical solutions of
some specific examples, including observations in the northern South China Sea (SCS), are obtained to investigate the effect of back-
ground current on internal wave vertical structure. The effects of current shear and curvature on internal wave vertical structure are eval-
uated separately. It is found that the phase speed and wave structure are modified by background currents, the current shear has little
effect on wave structure, whilst the current curvature could have a strong impact on the wave structure. The extent of the effect by the
current curvature on the wave structure depends on the magnitudes of current curvature, relative wave speed, and buoyancy frequency,
sometimes the effect by the current curvature may even cause the wave to attenuate severely with depth. A new method to obtain the real
eigenfunction with depth in the case that the waves become evanescent is also put forward. It is shown that the residual tidal current in
the northern SCS is strong enough to cause the wave to attenuate severely at the upper layer.
� 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Internal wave is a common phenomenon in stratified
oceans. It is important during the processes of vertical
and horizontal exchange of sea water and mass and heat
transports, which also change the temperature and salin-
ity field structure, the propagation of light and sound.
Meanwhile, the activity of internal wave may exert
important effect on floating and sinking rule [1–5]. The
wave speed, modal shape and dispersion relationship
are often solved by linearized wave equations [6]. Even
for the analyses of nonlinear internal waves, the solution
of linearized wave modal equations is often a necessary
step [7]. Cai et al. [8] developed a method to estimate
the forces and torques exerted by internal solitons on

cylindrical piles based on the calculation of wave modal
eigenfunctions, but they did not consider background
currents in their calculation.

There have been studies on the kinematic and dynamic
effects of background currents on the evolution of nonlin-
ear internal wave trains [9–11]. The presence of such cur-
rents results in changes not only in the wave speed and
wave form, but also in the nonlinear evolution of internal
waves through the modifications of environmental param-
eters [7]. However, no systematic analyses have been done
on the effects of current shear and curvature, i.e., the first
and second derivatives of current versus depth, on the
internal wave structure. Here, we evaluate these effects
and demonstrate that the current curvature has a stronger
effect on wave modal shape than the shear does. The actual
vertical structure, not just the shear, of a background flow
has to be taken into account when estimating the impact of
the flow on internal waves.

1002-0071/$ - see front matter � 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited

and Science in China Press. All rights reserved.

doi:10.1016/j.pnsc.2007.11.019

* Corresponding author. Tel.: +86 20 89023186; fax: +86 20 84451672.
E-mail address: caisq@scsio.ac.cn (S. Cai).

www.elsevier.com/locate/pnsc

Available online at www.sciencedirect.com

Progress in Natural Science 18 (2008) 585–589



2. Solution of the wave modal equations

In the linear approximation, the dimensionless eigen-
functions Wi (with its maximum value normalized to unity)
satisfy the boundary value generalization equations [1,12]:
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is the buoyancy

frequency, z the vertical coordinate, and D the depth of the
ocean. From Eqs. (2) to (4), the velocity eigenvalues ci (for
mode i) and eigenfunctions Wi can be found. For each
mode, Eq. (2) can be simply written as
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no background current (u = 0) and Boussinesq approxi-
mation (thus the second term of the equation is ignored),
the Thompson–Haskell method [6] was used to solve
Eqs. (3)–(5), where the water column is divided into
many continuous levels, and if the vertical discrete level
is thin enough, the buoyancy frequency N(z) could be re-
garded as a constant so that the analytic solution of Eq.
(5) can be obtained. Finally, the eigenvalues ci and their
functions can be solved numerically by a joint equation
transformed with a complete set of matrix equations.
This method also works without Boussinesq approxima-
tion [13]. We will show examples of such calculations in
the next section.

For the sake of convenience, here we focus our discus-
sion on the case with Boussinesq approximation. Under

the Boussinesq approximation, all the terms with N2

g in

Eq. (2) could be ignored, i.e., A � 0, B � N2þðc�uÞu00

ðc�uÞ2 , and thus

the shear has little effect on the wave vertical structure.
Suppose that the coefficient B in Eq. (5) is a constant, the
solution is
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where b1 and b2 are constants. If B > 0, we get a cosine
form solution, and the eigenfunction W changes smoothly
with depth. If B < 0, we get an exponential form solution,
which would cause the eigenfunction W to jump sharply

with depth. B = 0 is the singular point. For the low wave
modes, the phase speed is generally greater than the back-
ground current, thus the relative wave speed (c � u) is
greater than 0. Therefore, the eigenfunction W may change
largely with depth if the product of relative wave speed and
current curvature is a larger negative value. We can solve
the singular points for the distributions of N in the case
that the relative wave speed (c � u) and curvature u00 are gi-
ven (Fig. 1). It can be noted from Fig. 1 that N changes
within 2–13 cycle/h (cph), whose range is very common
for buoyancy frequency in the stratified shelf ocean. For
the specific N, if the current curvature varies to a large ex-
tent so that B < 0, the eigenfunction W may jump easily
with depth.

Now we discuss the possibility for the jumps appearing
in the eigenfunction for the specific u00. When u00 is less than
0, it is easier for the jumps to appear in the eigenfunction of
lower modes than that of higher modes. This is because
(c � u) is commonly greater than 0 for the lower modes,
thus B may be less than 0 though u00 keeps no change,
which would cause the eigenfunction W to jump with
depth. Vice versa, when u00 is greater than 0, there are
two cases: first, it is easier for the jumps to appear in the
eigenfunction of higher modes than that of lower modes.
This is because for the very high mode, the phase speed
may turn to be lower than the current speed, thus (c � u)
is less than 0, and then B may be less than 0 if the current
curvature u00 has a larger positive value, and the jump in the
eigenfunction may appear again. Second, since the back-
ground current u changes with z, (c � u) may be less than
0 at some depth, so that B is smaller than 0 and the corre-
sponding jump in the eigenfunction appears.

3. Examples and discussions

When we compare the solutions of wave modal equation
with or without the current curvature, the following four
simple cases are considered:

(1) Parabolic case, i.e., u = az2 + bz + q. Here, a, b and q
are constants. Thus, the shear u0 = 2az + b, the verti-
cal curvature u00 = 2a. For this case, the curvature in
the whole depth only depends on the constant a.

Fig. 1. Distribution of the singular points for buoyancy frequency N

versus parameters (c � u) and curvature u00.
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(2) Linear case, i.e., u = rz. Here, r is a constant. Thus,
the shear u0 = r, vertical curvature u00 = 0, and B is
also always greater than 0.

(3) No background current, i.e., u = 0. Thus, the shear
and curvature are 0, and B is always greater than 0.

(4) Observational background current.

To demonstrate that the wave vertical structure may
change easily and largely due to the effect of the current
curvature in reality, an example of the stratified ocean in
the continental shelf of the northern South China Sea
(SCS) in June, 1998, is given for discussion. The buoyancy
frequency N (Fig. 2) at a mooring (20� 21.311N;116�
50.6330E), with a water depth of about 470 m, was com-
puted based on the Conductivity-Temperature-Depth
observational data [8]. It has been reported that the inter-
nal solitons are very active in this sea area [8,14].

By solving Eqs. (2)–(4) using the Thompson–Haskell
method [6] with a vertical resolution of 5m, we can obtain
the wave phase speed and its distribution of eigenfunction
for any mode, but here we only discuss phase speeds and
the corresponding eigenfunctions of the first three modes
and present four solutions of the real examples correspond-
ing to the above four cases.

In case 1, suppose that the current profile (Fig. 3)
changes from 0 to maximum 0.1 m/s within the upper
50 m in a symmetric parabolic form, i.e.,
u = � 1.6 � 10�4z(z � 50), with u0 = � 3.2 � 10�4z and
u00 = � 3.2 � 10�4 m�1 s�1; in case 2, the current speed
changes linearly from 0.1 m/s to 0 within the upper 50 m,
i.e., u = 0.1(1 � z/50), with u0 = �0.002 s�1 and u00=0; in
case 3, u = u0 = u00 = 0; in case 4, the observational residual
current at the above mooring (note that the internal soliton
signal is removed), computed by the Acoustic Doppler
Current Profiler (ADCP) cast data, is given as the back-
ground current. Unfortunately, the effective recording

depth of ADCP is only from 10 to 150 m with a 4 m reso-
lution, thus we suppose the current speed, shear and curva-
ture are all zero below 150 m. For current-shear cases, the
local Richardson number Ri(z) = (N/u0)2 for wave breaking
is also computed, and the resulted Ri(z) is always >1/4,
which suggests that the flow is always stable.

Fig. 4 shows the solution in case 1. The jumps in the
eigenfunction appear at z=0–55 m for the first mode, at
z=0–10 m for the second mode and at z=0–5 m for the
third mode. The present wave vertical structure is very dif-
ferent from the normal one. In fact, the jump in the eigen-
function means that the wave is severely attenuated with
depth as it propagates across this layer [1], it distorts the
real eigenfunction with depth. In order to get a real solu-
tion W, we suppose the waves become evanescent in expo-
nential form from an amplitude W0 within the jumping

Fig. 2. Distributions of buoyancy frequency N versus depth in the
northern South China Sea.

Fig. 3. Current profile of some cases (case 1: dashed line; case 2: solid line;
and case 4: circled line).

Fig. 4. Distribution of normalized amplitude, W, of the first 3 modes
versus depth in case 1 (first mode: solid line; second mode: dashed line;
and third mode: circled line).
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domain (here W0 is the solution at Z0, the depth of the
lower limit of the jumping domain. For example, W0 are
the solutions at 55 m for the first mode, at 10 m for the sec-
ond mode and at 5 m for the third mode, respectively)
instead of the present jumping form, i.e., the solution W

at depth z where the waves become evanescent is computed
as follows:
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Here, z = 0–55 m for the first mode, z = 0–10 m for the sec-
ond mode and z = 0–5 m for the third mode. Thus, in the
following, we re-perform the calculations within the jump’s
occurring domain and only give the final real solution.

The corrected solutions of phase speeds and their corre-
sponding eigenfunctions are shown in Table 1 and Figs. 5
and 6. Note that now no jumps appear in the solution of
the eigenfunction. It is found that the difference among
the phase speeds of each mode in the four cases is distinct,
e.g., the phase speed of the first mode is within 1.295–
1.423 m/s. The eigenfunction (i.e., the wave vertical struc-
ture) in case 1 is distinctly different from those in cases 2
and 3, especially the wave is severely attenuated within
the upper 50 m for the first mode; the eigenfunctions in
cases 2 and 3 are almost overlapped for the first 2 modes
but are slightly different for the third mode (Fig. 5). This
suggests that the effect of the current curvature on the
internal wave structure is very important, which may cause
the lower-mode wave to attenuate severely with depth,
whilst the current shear (in case 2) has little effect on the
lower-mode wave structure. In our additional experiment,
we reduced the current maximum speed to 0.05 m/s (thus
its curvature is also reduced) in case 1, it was found that
there was no jump in the eigenfunction (figure is not
shown), although it was somewhat different from that with-
out the current curvature. This demonstrates that only
when the current curvature is large enough, the severe
attenuation of wave with depth could happen. Although
Liu [7] considered the background current curvature in
the equation of wave equations, the given current curvature
may be too small to cause the severe wave attenuation with
depth.

As expected, in case 4, for the adjacent mooring sea
areas in the northern SCS the internal solitons are very
active, the residual current is very strong, and the internal
wave is attenuated severely within the upper 60 m for the

first mode, and within 0–5 m for the second and third
modes (Fig. 6).

Table 1
Details of the characteristic parameters of the first 3 modes for 4 cases

Mode number Phase speed c (m/s)

1 2 3 4

1 1.295 1.356 1.355 1.423
2 0.657 0.685 0.682 0.726
3 0.444 0.457 0. 452 0.513

Fig. 5. Normalized amplitude (W) of the first mode (a), second mode (b),
and third mode (c) versus depth (case 1 for corrected solution: circled line;
case 2: dashed line; and case 3: solid line. Note that the corrected solutions
where the waves become evanescent are marked by the asterisks).
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We can infer that since the calculation of nonlinear
parameter and dispersion parameter for the evolution of
nonlinear internal wave is based on the eigenfunction and
its first derivative [8], their estimate of the forces and tor-
ques exerted by internal solitons on cylindrical piles would
be very different if the current curvature is considered.

The current profiles in cases 1 and 4 presented here are
not rare in the continental shelf sea area, in fact, the tidal
residual current or wind-driven current there may be very
strong at the surface, and its vertical curvature would be
large, thus its effect on the wave vertical structure would
be very important and cannot be ignored.

4. Conclusion

In this paper, based on the wave modal equations with
current vertical curvature and some observational data of
the northern South China Sea, the analytic and numerical
solutions of some specific examples are given to demon-
strate the effect of background current on internal wave
vertical structure.

We have found that the phase speed and wave vertical
structure are modified by background currents, whereas
current shear has little effect on the wave structure. More-
over, if the product of relative wave speed and current cur-
vature is a large negative, the effect of the current curvature
on the eigenfunction with depth would be very important
and cannot be ignored. It may not only affect the wave
parameters such as linear wave speed, but also cause the

lower-mode wave to attenuate severely with depth. The
extent of the impact depends on the magnitudes of current
curvature, relative wave speed and buoyancy frequency,
and we also obtained the analytical results about the distri-
bution of the singular points versus these three parameters.
In addition, to obtain the real eigenfunction with depth in
the case that the waves become evanescent, the eigenfunc-
tion is computed in the exponential form within the corre-
sponding domain instead of the normal boundary
condition as in Eqs. (3) and (4) in the calculations.

We also found that the observational residual tidal cur-
rent in the northern SCS is strong enough to cause the
wave to attenuate severely at the upper layer.
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